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Abstract

We investigate the dynamic behaviour of the typical airfoil section modelled structurally by linear springs in pitch

and plunge with the aerodynamic loading represented by our interpretation of the state-space version of the

Leishman–Beddoes semi-empirical model. Similarly to other semi-empirical models of dynamic stall, this model

represents the nonlinear component of the unsteady aerodynamic loading on the airfoil by a series of equations, with

empirical coefficients, devised specifically for each of the relevant dynamic stall flow states. Given this piecewise

definition of the loading, we pay particular attention to the description of the discontinuities of the model and to their

effect on the dynamics of the system through phase plots, Poincaré sections and bifurcation diagrams. These results

show that the model is sensitive to small variations of some of the parameters of the model. They also show that

prohibitively small timesteps are required to obtain numerically converged Poincaré maps. We advocate the use of event

detection techniques for the numerical integration of the equations of motion to reduce this severe timestep restriction.
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1. Introduction

The term dynamic stall usually refers to an unsteady flow characterized by the formation, convection and shedding of

a vortex on the suction side of an aerofoil. Dynamic stall may affect the aerodynamic performance of helicopter blades,

turbomachinery compressor blades, wind turbines and other streamlined structures operating at high angles of

incidence. It could also reduce fatigue life of many modern lightweight blades through the induced vibrations. This

phenomenon has been described in excellent reviews (McCroskey, 1982; Ericsson and Reding, 1988; Leishman, 2006).

The main events in the flow development around the aerofoil during a dynamic stall cycle are: (i) the dynamic lift

exceeds maximum static lift at the static stall angle, (ii) a vortex is formed at the leading edge and its formation marks

the beginning of the moment stall, (iii) the vortex grows in strength, is convected along the surface, reaches the trailing

edge and begins its detachment when the lift stalls, (iv) finally, flow reattachment begins when the angle of incidence is
e front matter r 2007 Elsevier Ltd. All rights reserved.
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low enough again. The unsteady aerodynamic loading is significantly different from the static one for the same angles of

incidence. The presence of an attached vortex on the suction side of the aerofoil generates a higher lift whereas the

detachment or shedding of this vortex results in a substantial lift reduction.

Dynamic stall in lifting surfaces involves complex separated, even transitional, three-dimensional flows. Numerical

simulations of these flows are possible but they are very expensive and are not always able to predict the physics accurately.

Therefore simplified blade element methods in combination with two-dimensional empirical stall models are routinely used

for engineering design purposes both in helicopter rotors (Leishman, 2006) and wind turbines (Burton et al., 2001). Tan and

Carr (1996) present a comparison of simulations obtained with these methods with three-dimensional data.

Several semi-empirical dynamical stall models have been proposed. Amongst these we could mention those devised

by ONERA (Petot, 1989), Boeing (Gormont, 1973), Johnson (1970), and Gangwani (1982). We have chosen the state-

space formulation of the Leishmann–Beddoes (LB) model (Leishman and Beddoes, 1986, 1989) since it exhibits the

nonsmoothness that we are seeking to investigate and also because this model or its modifications (Hansen et al., 2004;

Larsen et al., 2007) are widely used in engineering applications.

The purpose of this paper is to couple the LB model with a linear structural model of an aerofoil free to move in pitch

and plunge to investigate and understand the dynamics of the system for varying parameter values using tools from the

theory of dynamical systems. A similar approach has been adopted by other authors to investigate other dynamic stall

models [e.g. Lee et al. (1998), Price and Keleris (1996), Li and Fleeter (2003)]. However, our main interest and the novel

aspect of this work is the analysis of the aeroelastic system as a nonsmooth system.

The dynamics of nonsmooth dynamical systems is a fast growing research field, see for instance the book by di

Bernardo et al. (2007) for an overview. The complexity of the LB model and its relatively large size prevent us from

using some of the powerful theories currently under development for the analysis of such systems. Nonetheless, some of

the effects of the nonsmoothness present in the LB model on the dynamics of the aerofoil will be investigated.

We have deliberately chosen the structural model to be linear so as to ensure that the nonlinear behaviour is

exclusively due to the aerodynamics loading represented by the LB model. An extensive discussion of structural

nonlinearities can be found in the review article by Lee et al. (1998).

The main objectives of the paper are to investigate the dynamics induced by the LB model on a two degree of freedom

aerofoil section and to show some of the effects of the discontinuities on such dynamics. More importantly, the authors

aim to highlight that a suitable handling of the discontinuities, often referred to as either event detection or event

location (Shampine et al., 1991), is required for a numerical integration of nonsmooth systems to produce an accurate

representation of their dynamic behaviour.

The paper is organized as follows. Section 2 presents the governing equations of motion. Section 3 describes our

interpretation of the LB model and its implementation. Section 4 discusses the treatment of the effective angle of

incidence and its derivative in the presence of pitch motion and its implications to the solution of the coupled

fluid–structure system. Finally, Section 5 presents the analysis of the aeroelastic system from the perspective of the

theory of dynamical systems, discusses its behaviour and sensitivity to some parameters of the model, and addresses the

effect of discontinuities in the performance of the numerical solver ode45 (Shampine and Reichelt, 1997) used to

integrate the equations of motion.
2. Equations of motion of the aerofoil

The mechanical model used here is the typical two-dimensional aerofoil section in a horizontal flow of undisturbed

speed U, as shown in Fig. 1. The aerofoil can move in the vertical direction (plunge) and rotate in the plane of the figure

(pitch). The plunge deflection of the elastic axis is denoted by h, taken to be positive in the downward direction, and a is
the pitch angle about the elastic axis, taken to be positive nose-up (clockwise according to the orientation of Fig. 1). The

chord length is denoted by c and b ¼ c=2 represents the mid-chord length. The elastic axis is located at a distance ahb

from the mid-chord, while the mass centre is located at a distance xab along the chord from the elastic axis. Both

distances are positive when measured towards the trailing edge of the aerofoil. The structural behaviour is modelled by

means of linear bending and torsional springs and dampers which are attached to the elastic axis.

The equations of motion have been derived in many textbooks of aeroelasticity [see Fung (1993)] and can be written

in nondimensional form as

x00 þ xaa00 þ 2zx
ō

U�
x0 þ

ō
U�

� �2

x ¼ �
1

pm
CLðSÞ, ð1Þ

xa

r2a
x00 þ a00 þ 2

za
U�

a0 þ
1

U�
2 a ¼

ð0:5þ ahÞ

mpr2a
½CLðSÞ cos aþ CDðSÞ sin a� þ

2

pmr2a
CM ðSÞ, ð2Þ
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Fig. 1. A sketch of the typical aerofoil section at an angle of incidence a and a deflection ha0.
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where the angle of incidence, a, is measured in radians and the plunge displacement is represented by the

nondimensional quantity, x ¼ 2h=c. The prime denotes differentiation with respect to the nondimensional time

S ¼ 2Vt=c. The symbols CL, CD and CM denote the coefficients of lift, drag and pitching moment about the aerofoil

quarter chord, respectively, and are assumed to be a function of the degrees of freedom and their first and second time

derivatives. The other parameters are: the ratio of natural frequencies in plunge and pitch ō, the nondimensional

damping coefficients in plunge zx and in pitch za, the nondimensional airspeed U�, the aerofoil to air mass ratio m, and
the aerofoil radius of gyration ra.

3. LB dynamic stall model

This section describes our interpretation of the state-space form of the LB model as described by Leishman and

Nguyen (1988), Leishman and Crouse (1989) and Crouse and Leishman (1992). The main advantage of using the state-

space form is that it can be appended to the structural model to construct a system of ordinary differential equations

representing the dynamical system. This model was originally developed for the aerodynamic analysis of rotor blades by

Beddoes (1983) and later revised by Leishman and Beddoes (1986, 1989).

The inputs to the system consist of the effective pitch angle, â, and the nondimensional pitch rate, q. Since these are

the only inputs to the dynamic stall model, they must also include the effects of plunging motions for an aerofoil with

two degrees of freedom. Appropriate definitions of â and q are given and further discussed in Section 4. Finally, the

dynamic stall model is represented by a set of ODEs of the form

x0 ¼ fðx; â; qÞ, (3)

and the resulting aerodynamic coefficients are given by

Ci ¼ giðx; â; qÞ; i ¼ N;M;C, (4)

where x0 ¼ dx=dS. The state vector is x ¼ ½x1; x2; . . . ; xn�
T, and n is the number of aerodynamic states. The lift and drag

are aerodynamic forces which are perpendicular and parallel to the direction of flow, respectively. However, the LB

model uses a different frame of reference and instead computes the normal force CN and chord force CC , which act

perpendicular and along the aerofoil chordline, respectively. Eventually, forces can be resolved into either frame of

reference for a given angle of incidence a

CL ¼ CN cos a� CC sin a; CD ¼ CN sin aþ CC cos a. (5,6)
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The LB model consists of three parts, the unsteady attached flow, the trailing edge separation, and vortex induced

airloads. The total airloads are given by

CN ¼ CI
N þ C

f
N þ Cv

N ; CM ¼ CI
M þ C

f
M þ Cv

M ; CC ¼ C
f
C , (7,8,9)

where the superscripts I, f and v refer in turn to the attached flow impulsive terms, the trailing edge separation and the

vortex induced loads.
3.1. Static airloads (Kirchhoff theory)

The Kirchhoff theory is used in the LB model to calculate the aerodynamic forces under steady conditions. It uses the

trailing edge separation point to determine the loss in normal force with respect to the ideal flow scenario. It gives the

position of the trailing edge separation point, f, as a function of â and a1 as

f ðâ; a1Þ ¼

1:00� 0:30 exp
jâj � a1

S1

� �
if jâjpa1;

0:04þ 0:66 exp
a1 � jâj

S2

� �
if jâjXa1;

8>>><
>>>:

(10)

where a1 is defined as the point where f ða1; a1Þ ¼ 0:70 and it is meant to closely correspond to the aerofoil static stall

angle of incidence. The condition f ¼ 1 represents fully attached flow, while f ¼ 0 represents fully separated flow.

The static normal force, pitching moment, and chord force are given by

CNstatic
¼ CNaâ

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðâ; a1Þ

p
2

 !2

, ð11Þ

CMstatic
¼ fK0 þ K1½1� f ðâ; a1Þ� þ K2 sinðp½f ðâ; a1Þ�m

�

ÞgCNstatic
, ð12Þ

CCstatic
¼ ZCNaâ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðâ; a1Þ

p
. ð13Þ

The parameters CNa, K0, K1, K2, S1 and S2 are functions of the free-stream Mach number and are determined from

static test data. These data are available for the NACA0012 aerofoil section (Leishman and Beddoes, 1986). The slightly

modified set of parameters used here is given in Table 1 of Appendix B. From the same reference, we get m� ¼ 2 and

Z ¼ 0:97.
3.2. Attached flow components

The normal forces and pitching moments under attached flow are written as

CI
N ¼

4

M

c

2V

� �
ða33x3 þ âÞ þ

1

M

c

2V

� �
ða44x4 þ qÞ, ð14Þ

CC
N ¼ CNa

2V

c

� �
b2ðA1b1x1 þ A2b2x2Þ, ð15Þ

CI
M ¼
�1

M
ðA3a55x5 þ A4a66x6 þ âÞ �

7

12M
�

1

KqM TI

x8 þ q

� �
, ð16Þ

CC
M ¼

1

4
� xaðMÞ

� �
CC

N �
p
8

b5b
2V

c
x7, ð17Þ

with superscript I indicating the impulsive terms and superscript C for the circulatory terms. The states x1; x2; . . . ; x8 are

the solutions of the system of linear ODEs

ðx�Þ0 ¼ Ax� þ B
â

q

( )
, (18)

where x� ¼ ½x1; x2; . . . ; x8�
T. The constant matrices A, and B are given in Appendix A.
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3.3. Trailing edge separation components

The trailing edge separation is modelled in a similar way to the Kirchhoff theory in Section 3.1. By introducing three

new state variables x9, x10 and x12 which are the solutions of the system of ODEs representing the delayed normal force,

the dynamic trailing edge separation point, and the substitute dynamic trailing edge separation point, respectively, the

aerodynamic forces are given by

C
f
N ¼ CC

N

1þ
ffiffiffiffiffiffiffi
x10
p

2

� �2

, ð19Þ

C
f
M ¼ ½K0 þ K1ð1� x̂Þ þ K2 sinðpx̂mÞ�CC

N

1þ
ffiffiffî
x
p

2

 !2

, ð20Þ

C
f
C ¼ ZCNa

CC
N

CNa

� �2 ffiffiffiffiffiffiffi
x10
p

, ð21Þ

where in Eq. (20), the variable x̂ is

x̂ ¼
x10 if x104x12;

x12 if x10px12:

(
(22)

Eqs. (19)–(21) are very similar to those in Section 3.1, but here the variable x10 introduces a dynamic effect which is not

present in the static case.

The states x9, x10 and x12 are solutions of the system of ODEs

x09 ¼
ðCC

N þ CI
N Þ � x9

TP

; x010 ¼

f
x9

CNa
; a1

� �
� x10

Tf

; x012 ¼
f ðâ; a1Þ � x12

0:63Tf 0
, (23,24,25)

where the trailing edge separation point function, f ðâ; a1Þ, has been defined in Eq. (10).

We should remark that the numbering of these states is consistent with the original numbering used by Leishman and

Crouse (1989). The ‘‘missing’’ variable x11 will be introduced later in Section 3.4. The variations of parameters Tf and

a1 are explained in the following section. The original values of the parameters Tf 0 and a10 are given in Table 1.
3.3.1. Vortex shedding phase ðjx9jXCN1Þ

This phase occurs when the leading edge pressure reaches the critical value CN1 defined as the critical normal force. If

jx9j ¼ CN1 and jx9j is increasing, then a vortex is shed from the leading edge and the vortex time, tv, starts (tv ¼ 0). The

vortex time tv progresses at the same rate as the nondimensional time S. The parameter Tvl is defined as the time

required for the vortex to travel one chord length. The variation of parameter Tf during the vortex shedding phase is

given by

Tf ¼

3Tf 0 if 0ptvpTvl and aa0X0;
1
3

Tf 0 if Tvlotvp2Tvl and aa0X0;
1
2

Tf 0 if 0ptvp2Tvl and aa0o0;

4Tf 0 if 2Tvlotv:

8>>>><
>>>>:

(26)

The parameter a1 does not depend on tv and it is given by

a1 ¼
a10 if aa0X0;

a10 � ð1� x10Þ
0:25da1 if aa0o0;

(
(27)

where da1 is a function of M given in Table 1.
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3.3.2. Flow reattachment phase ðjx9joCN1Þ

This phase is said to have begun when jx9j ¼ CN1 and jx9j is decreasing. This is taken into account by choosing

Tf ¼

Tf 0 if x10X0:7;

2Tf 0 if x10o0:7;

(
ð28Þ

a1 ¼ a10. ð29Þ

3.4. Vortex induced airloads

The final part of the model corresponds to the vortex induced airloads. The normal force and pitching moment

generated by the vortex are given by

Cv
N ¼ x11, ð30Þ

Cv
M ¼

�0:25 1� cos
ptv

Tvl

� �� �
x11 if tvp2Tvl ;

0 if tv42Tvl ;

8><
>: ð31Þ

where state x11 is the solution of the final ODE of the system

x011 ¼

c0v �
x11

Tv

if ac0vX0 and 0otvo2Tvl ;

�
x11

Tv

otherwise:

8>><
>>: (32)

The vortex feed, cv, determines the strength of vortex induced normal force and is defined as the instantaneous excess

normal force, cv ¼ CC
N � C

f
N . Negative vortex feed is not allowed, therefore Eq. (32) has two forms, depending on the

direction of the vortex feed as determined by the sign of the term ac0v (Björck, 2000). Its derivative, c0v, can therefore be

derived from Eqs. (15) and (19) as

c0v ¼ �CNa
2V

c

� �
b2ðA1b1x1 þ A2b2x2Þ

x010
4

1þ
1ffiffiffiffiffiffiffi
x10
p

� �
þ CNa

2V

c
b2½A1b1x01 þ A2b2x02� 1�

1þ
ffiffiffiffiffiffiffi
x10
p

2

� �2
" #

.

(33)

The rate of change of x11 in Eq. (32) is controlled by the parameter Tv. This parameter is also assumed to change

according to the flow condition and its variation during the vortex shedding phase (jx9jXCN1) is given by

Tv ¼

Tv0 if 0ptvpTvl and aa0X0;

0:25Tv0 if Tvlotvp2Tvl and aa0X0;

0:50Tv0 if 0ptvp2Tvl and aa0o0;

0:90Tv0 if 2Tvlotv:

8>>><
>>>:

(34)

Finally, the flow reattachment phase (jx9joCN1) is characterized by Tv ¼ Tv0.

A more detailed description of our interpretation of the LB model with its full validation is given by

Chantharasenawong (2007).
4. Remarks about the coupling of the structural and fluid models

A critical issue, often neglected in the existing literature, is the definition of the time derivative of the effective

angle of incidence. The effective angle of incidence, â, is the angle which has to be provided as input to the LB

model and usually contains information concerning the geometric angle of incidence, a, and the angular and vertical

velocities, a0; x0. Using the quasi-steady approach (Parameswaran and Baeder, 1995), the effective angle of incidence has

the form

â ¼ âða; a0; x0Þ. (35)
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The LB model also requires the pitch rate, q, that should be calculated as the derivative of the above expression, and

therefore assumes the form

q ¼ qða; a0; a00; x0; x00Þ. (36)

The coefficients CL and CM depend on the effective angle of incidence and its time derivative and the presence of the

term CLðâ; qÞ makes the system of ODEs implicit and therefore more difficult and expensive to solve.

In the present work the effective angle of incidence is defined as

â ¼ tan�1
sin aþ x0 cos aþ a0ðah þ 0:5Þ

cos a� x0 sin a

� �
. (37)

However, we will neglect the acceleration terms a00 and x00 in the expression for the pitch rate that is given by

q ¼ 2a0
1þ ðx0Þ2 þ a0ð0:5þ ahÞðsin aþ x0 cos aÞ

1þ ðx0Þ2 þ 2a0ð0:5þ ahÞðsin aþ x0 cos aÞ þ ½a0ð0:5þ ahÞ�
2
, (38)

where ah is shown in Fig. 1. This is advantageous because it renders the system explicit and permits the use of standard

numerical solvers. The introduction of this simplification appears to be common practice [e.g. Mahajan et al. (1993),

Lee et al. (1998)] but it might have an impact on the dynamic behaviour of the system which deserves further

investigation.

The nondimensional equations of motion of the typical aerofoil section are given in Eqs. (1) and (2) which can be

transformed into first order state-space ODEs by writing

x̂
0
¼ gðx; x̂Þ, (39)

where x ¼ fx1; x2; . . . ; x12g
T, and x̂ ¼ fa; a0; x; x0gT ¼ fx13; x14;x15; x16g

T are the states representing the motion of the

aerofoil. Finally, the four additional ODEs for states 13–16 must be appended to the LB model state-space formulation

as defined in Eqs. (3) and (4) to complete the aeroelastic system of 16 ODEs.
5. Analysis of the aeroelastic response

The main objectives of this section are to present numerical simulations of the aeroelastic behaviour of a NACA0012

aerofoil section, to analyse them using the tools of the theory of dynamical systems, to discuss the role of the

nonsmooth definition of the aerodynamic loads into its complex dynamic behaviour and, finally, to address the

important numerical issues associated with the nonsmoothness of the system.

Unless otherwise stated, the aerofoil has the following characteristics: m ¼ 100, xa ¼ 0:25, ah ¼ �0:50, ra ¼ 0:50,
CM0 ¼ �0:004, ō ¼ 0:80, and za ¼ zx ¼ 0. This is a symmetric aerofoil and the moment coefficient at zero incidence

CM0 should be zero but here a small value of �0:004 has been adopted instead to break the symmetry of the system and

make it more generic (Galvanetto, 2002).

All the bifurcation diagrams presented here show the steady-state local maxima of the angle a in the vertical axis.

These have been obtained using a simple brute force technique where the time evolution of a is calculated for a set of

values within the range of the control parameter, e.g. the free-stream Mach number M. Our results are numerically

converged in the sense that reducing the time step or the various tolerances of the time integration routines does not

lead to any significant changes in the values shown in the bifurcation diagrams. The accuracy of the time integration is

further discussed in Section 5.1.

The Mach number has been varied in a relatively small range of values between 0:310 and 0:322 and the relevant

bifurcation diagram is shown in Fig. 2(a). It shows that for small values of the Mach number, there exists a fixed point

which loses its stability at M � 0:3107. This is a Hopf bifurcation where a periodic motion of amplitude increasing with

Mach number is generated.

An enlarged view of the bifurcation diagram in the range of 0:316pMp0:318 is shown in Fig. 2(b). The periodic

motion generated at the Hopf bifurcation seems to disappear for M � 0:3167 which corresponds to point 2 in Fig. 2(b).

At least two periodic attractors coexist in the range 0:31615pMp0:31670. A second periodic motion is characterized

by a maximum value of a close to 16:5�. Numerical computations show that, in the range 0:31694pMp0:31713, this
periodic motion coexists with a nonperiodic attractor. For larger values of the Mach number, only a nonperiodic

motion has been found.
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Section 3 shows that discontinuities affect the dynamic stall model when the state variable x9 assumes the values

�CN1, and when x10 crosses the value x10 ¼ 0:70. For this reason, the plane x92x10 is the most suitable to illustrate the

interaction between the dynamics of the model and its discontinuities.

Fig. 3(a) shows the trajectory of one motion corresponding to point 2 in Fig. 2(b). This trajectory and those of all the

motions corresponding to the points between points 1 and 2, are characterized by the fact that they do not intersect with

the values x9 ¼ �CN1 or x10 ¼ 0:70. As the Mach number increases, the trajectory of the motion approaches the

boundaries x9 ¼ �CN1. It is assumed that the attractor disappears when its trajectory becomes tangent to the line

x9 ¼ �CN1.

Fig. 3(b) shows a trajectory of a motion belonging to the upper periodic branch of the bifurcation diagram of

Fig. 2(b). The phase plot clearly shows that the trajectory does cross the vertical lines indicating x9 ¼ �CN1, and

numerical computations confirm that this is the case for all motions belonging to the branch of points 3-4-5 in Fig. 2(b).

For increasing values of the Mach number, the amplitude of the motion grows and the trajectory approaches the other

discontinuity line x10 ¼ 0:70, but intersections between the attractor and the line x10 ¼ 0:70 have not been detected.

Finally, Fig. 3(c) shows a trajectory for point 6 in Fig. 2(b). It is a nonperiodic motion the trajectory of which

intersects all discontinuity lines x9 ¼ �CN1, and x10 ¼ 0:70, feature common to all motions of the nonperiodic branch.

Fig. 3(b) and (c) clearly show that the gradient of the trajectory is not continuous across the discontinuity lines

represented by x9 ¼ �CN1 and x10 ¼ 0:7. This is because the parameters Tf , Tv, and a1 have different values in

different regions of the phase space.

The application of semi-empirical models beyond the conditions and range of parameters for which validation has

been accomplished (harmonic oscillation) can obviously be questioned. However, a somewhat partial justification of the

use of the LB-model in nonperiodic regimes can be derived from the time histories of the motion corresponding to

points 2 and 6 of Fig. 2(b) depicted in Fig. 3. It is apparent that the nonperiodic motion of point 6 is not ‘‘very

irregular’’. It is dominated by the same frequency as the motion of point 2 and the fluctuation of the amplitudes is small

compared to the amplitudes themselves. Therefore, we assume that the parameter values employed to match the

experimental periodic motions are correct for the nonperiodic trajectories.
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Fig. 3. Phase plots of x9 and x10 (top) and time histories of angle of incidence (bottom) for: (a) point 2 in Fig. 2(b); (b) point 4 in Fig.

2(b); (c) point 6 in Fig. 2(b).
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Another important issue raised by our results is that for the same set of parameter values motions of different nature

may exist. In similar cases the steady state onto which a trajectory is attracted depends on its initial conditions.

Coexisting attractors imply the existence of the relevant basins of attraction. The dynamical system under investigation

is a 16-dimensional autonomous system therefore its basins of attraction have dimension 16 and cannot be easily

visualized. However, it is possible to project the basins of attraction on any plane of two of the 16 state variables to have

a graphical representation of the basins. The basins of attraction are projected in the plane of the physical variables a
and x. A grid of initial conditions for a and x is chosen in the window: 0:1pap0:4 and 0:05pxp0:15. Each point of the

grid will then be integrated in time to determine their resulting steady states. The points of the grid originating motions

attracted by the nonperiodic attractor are marked with a circle in Fig. 4, whereas the initial conditions of motions

ending up on the periodic attractor are left blank. The triangle in Fig. 4 is the trace of the periodic attractor, which

appears to be close to the basin boundary.

5.1. Remarks on the importance of event detection

Our results have been obtained with the Matlab routine ode45 equipped with optional event detection. The

trajectory is continuously monitored so that when it intersects a discontinuity (for example x9 ¼ �CN1) in the phase

space, the intersection is accurately located and the correct system of differential equations is always integrated. The

theory behind this technique and its implementation within Matlab are described by Moler (1997). Fig. 5 compares

the solutions obtained with the event detection algorithm against those without event detection. The tolerance of the

integration routine equipped with the event detection is 10�8xi, where xi is the current value of xðtÞ. The figure shows

that the solution of the standard ode45 approaches the one obtained with the event detection algorithm only after the

tolerance is reduced by 4 orders of magnitude. The computational times, relative to those of the algorithm with event

detection, required by the standard algorithm to integrate a time span of 20 s at M ¼ 0:31924 for values of the tolerance
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of 10�8, 10�10 and 10�12, are 1:3, 3:2 and 14:4, respectively. This clearly shows the benefit of incorporating event

detection in the time integration of the aeroelastic system if high accuracy is a concern.
6. Conclusions

This paper presents an investigation of the dynamics of a typical aerofoil section in dynamic stall conditions. The

popular LB dynamic stall model has been chosen to describe the aerodynamic forces. We have shown that the

discontinuities in the definition of the model have a strong effect on the dynamics of the system.

A few empirical remarks can be made on the results presented in this paper, in particular on the motions shown in

Fig. 2(b). This figure shows the evolution of three main attractors as the Mach number is varied. The first attractor,

represented by points 1 and 2 in the figure, is a periodic motion generated at a Hopf bifurcation, its trajectories do not

intersect any discontinuity and when that happens the attractor seems to disappear. The second attractor, represented

by points 3, 4 and 5, is also periodic. It is not clear how it is generated and then destroyed, but its trajectories seem to be

always characterized by intersections with the discontinuity at x9 ¼ �CN1. Finally a nonperiodic attractor exists,

corresponding to point 6 of Fig. 2(b), and its trajectories intersect both discontinuities at x9 ¼ �CN1 and x10 ¼ 0:7.
Therefore, numerical evidence suggests that the discontinuous definition of the dynamic stall model has a considerable

impact on the dynamics of the aeroelastic model. Different attractors seem to be characterized by different intersections

with the discontinuities and some of the bifurcations seem due to the collision of steady-state trajectories with

discontinuities.

Moreover, from an engineering point of view, the numerical simulations show that the computer model presents a

remarkable sensitivity to small changes in the value of the Mach number. In a range which would probably be too small

for a detailed experimental investigation, the model exhibits a large number of bifurcations and coexisting attractors. It

is not clear to the authors if such a complexity could be a reflection of true physical facts or it is simply a consequence of

mathematical artifacts.

Finally, the above-mentioned discontinuities require a careful numerical integration of the system. Numerical

evidence is presented which shows how event detection algorithms are particularly useful to obtain high numerical

accuracy without excessively increasing the integration time. To the best of our knowledge, comprehensive rotor

analysis codes for rotorcraft and wind turbines based on the LB model, or other semi-empirical dynamic stall models,

do not use event detection and therefore large numerical errors may be associated to the time steps in which the

trajectory moves across the discontinuities in the definition of the model. A simpler way to reduce such an error would

be to reduce the timestep in the algorithm for time integration, but this could lead to prohibitively expensive computing

times.
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Appendix A. Attached flow components

The constant matrices in Eq. (18) are given by

A ¼ diag½a11 a22 a33 a44 a55 a66 a77 a88�; B ¼
1 1 1 0 1 1 0 0
1
2

1
2

0 1 0 0 1 1

" #T
.

The elements in A are

a11 ¼ �
2V

c
b1b

2; a22 ¼ �
2V

c
b2b

2; a33 ¼ �
1

KaTI

; a44 ¼ �
1

KqTI

,

a55 ¼ �
1

b3KaMTI

; a66 ¼ �
1

b4KaMTI

; a77 ¼ �
2V

c
b5b

2; a88 ¼ �
1

KqM TI

,



ARTICLE IN PRESS

Table 1

NACA0012 aerofoil parameters as functions of the free-stream Mach number

Mach number 0.30 0.4 0.5 0.6 0.7 0.75 0.8

CS
Na

6.6211 7.0502 7.5100 8.2457 9.6864 10.9432 13.6407

a10 0.2529 0.2073 0.1741 0.1409 0.0929 0.0580 0.0116

da1 0.0367 0.0349 0.0253 0.0175 0.0140 0.0035 0.0017

S1 0.0262 0.0284 0.0305 0.0349 0.0393 0.0305 0.0061

S2 0.0201 0.0140 0.0105 0.0061 0.0044 0.0070 0.0016

K0 0.0125 0.0300 0.1000 0.1900 0.1500 0.0050 �0.0500

K1 �0.108 �0.108 �0.100 �0.096 �0.072 �0.104 0.016

K2 0.04 0.05 0.04 0.04 0.15 �0.02 �0.01

Df 8.0 7.75 6.2 6.0 5.9 5.5 4.0

Tf 0 3.0 2.5 2.2 2.0 2.0 2.0 2.0

TP 1.7 1.8 2.0 2.5 3.0 3.3 4.3

Tv0 6.0 6.0 6.0 6.0 6.0 6.0 4.0

Tvl 5.25 6.75 6.75 6.75 6.75 6.75 6.75

CN1 1.45 1.20 1.05 0.92 0.68 0.50 0.18
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where

TI ¼
c

a
,

Ka ¼
0:75

ð1�MÞ þ pb2M2ðA1b1 þ A2b2Þ
; Kq ¼

0:75

ð1�MÞ þ 2pb2M2ðA1b1 þ A2b2Þ
,

KaM ¼
A3b4 þ A4b3

b3b4ð1�MÞ
; KqM ¼

7

15ð1�MÞ þ 3pbM2b5
,

with A1 ¼ 0:30, A2 ¼ 0:70, A3 ¼ 1:50, A4 ¼ �0:50, b1 ¼ 0:24, b2 ¼ 0:53, b3 ¼ 0:25, b4 ¼ 0:10, and b5 ¼ 0:50.
Appendix B. Parameters of the LB model

The parameters used for our interpretation of the LB model are given in Table 1. The parameters are those given by

Leishman and Beddoes (1986) but some of them have been slightly modified to achieve a better fit to experimental data

(McCroskey et al., 1976).
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